
COMPSCI 389
Introduction to Machine Learning

Days: Tu/Th. Time: 2:30 – 3:45 Building: Morrill 2 Room: 222

Topic 10.0: Automatic Differentiation
Prof. Philip S. Thomas (pthomas@cs.umass.edu)

Old Answer: Manual Calculus!

• By finding clever patters in the derivatives, they can be derived and
computed relatively easily.

• … for fully connected feed forward networks.
• As network architectures became bigger and more sophisticated,

there was a growing need for automated systems for computing
the necessary derivatives.

• This lecture provides an overview of these methods, called
automatic differentiation methods.

• Before using these to differentiate loss functions w.r.t. model
parameters, we describe how they can be used to take the
derivative of an arbitrary function.

Chain Rule (Review)

𝑑𝑑𝑑𝑑 𝑔𝑔 𝑥𝑥
𝑑𝑑𝑥𝑥

=
𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑔𝑔 𝑥𝑥

𝑑𝑑𝑔𝑔 𝑥𝑥
𝑑𝑑𝑥𝑥

or

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

Chain Rule

𝑥𝑥

𝑑𝑑

𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 – How does changing 𝑥𝑥 change 𝑑𝑑?
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 – How does changing 𝑥𝑥 change 𝑑𝑑?
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 – How does changing y change 𝑑𝑑?

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

=2 (adding 𝜖𝜖 to 𝑥𝑥 increases 𝑑𝑑 by 2𝜖𝜖)

2

=3 (adding 𝜖𝜖 to 𝑑𝑑 increases 𝑑𝑑 by 3𝜖𝜖)

3

=? (adding 𝜖𝜖 to 𝑥𝑥 increases 𝑑𝑑 by ? 𝜖𝜖)

Chain Rule

𝑥𝑥

𝑑𝑑

𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 – How does changing 𝑥𝑥 change 𝑑𝑑?
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 – How does changing 𝑥𝑥 change 𝑑𝑑?
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 – How does changing y change 𝑑𝑑?

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

=2 (adding 𝜖𝜖 to 𝑥𝑥 increases 𝑑𝑑 by 2𝜖𝜖)

2

=3 (adding 𝜖𝜖 to 𝑑𝑑 increases 𝑑𝑑 by 3𝜖𝜖)

3

=6 (adding 𝜖𝜖 to 𝑥𝑥 increases 𝑑𝑑 by 6𝜖𝜖)

6

Chain Rule

𝑥𝑥

𝑑𝑑

𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

+
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑′

𝑑𝑑𝑑𝑑′

𝑑𝑑𝑥𝑥

𝑑𝑑𝑦

2
3

?

1 5

Chain Rule

𝑥𝑥

𝑑𝑑

𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

+
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑′

𝑑𝑑𝑑𝑑′

𝑑𝑑𝑥𝑥

𝑑𝑑𝑦

2
3

𝟐𝟐 × 𝟑𝟑 + 𝟏𝟏 × 𝟓𝟓 = 𝟏𝟏𝟏𝟏
1 5

Expression Trees

• Math expressions like function definitions can be converted into
expression trees.

• Each internal node is a math operator.
• Each leaf node is a constant or variable.

• Example: 𝑑𝑑 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥

𝑥𝑥

⋅2

×

23

+

×

𝑑𝑑(𝑥𝑥)

𝑑𝑑 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥
• Each math operator (internal node)

can be viewed as a function.
• We can view this expression as the

composition of many functions:
• 𝑑𝑑1 𝑥𝑥 = 𝑥𝑥2

• 𝑑𝑑2 𝑥𝑥,𝑑𝑑 = 𝑥𝑥𝑑𝑑
• 𝑑𝑑3 𝑥𝑥,𝑑𝑑 = 𝑥𝑥 + 𝑑𝑑
• 𝑑𝑑 𝑥𝑥 = 𝑑𝑑3 𝑑𝑑2 3,𝑑𝑑1 𝑥𝑥 , 𝑑𝑑2 2, 𝑥𝑥

• We can apply the chain rule to
break the derivative, 𝑑𝑑𝑑𝑑 𝑑𝑑

𝑑𝑑𝑑𝑑
, into

many smaller problems! 𝑥𝑥

⋅2

×

23

+

×

𝑑𝑑(𝑥𝑥)

We write 𝑥𝑥𝑦 and 𝑥𝑥𝑦𝑦 so that we can talk about the two paths, 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑𝑑𝑑′

 and 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑𝑑𝑑′′

Automatic Differentiation

• Goal: Compute 𝑑𝑑𝑑𝑑(𝑑𝑑)
𝑑𝑑𝑑𝑑

, for some value of
𝑥𝑥

• Example: 𝑥𝑥 = 5
• Step 1: Run a “forwards pass”

• Evaluate the expression tree, computing
values from the bottom to the top.

• Step 2: Run a “backwards pass”
• Loop over nodes from the top to the

bottom.
• For each node, compute the derivative of
𝑑𝑑(𝑥𝑥) with respect to each input of the node.

𝑥𝑥

⋅2

×

23

+

×

𝑑𝑑(𝑥𝑥)

5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑐𝑐

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑎𝑎

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑏𝑏

𝑥𝑥𝑦
𝑥𝑥𝑦𝑦

Backwards Pass: Multiplication Node

• We want to compute 𝜕𝜕𝑑𝑑(𝑥𝑥)/𝜕𝜕in1 and 𝜕𝜕𝑑𝑑(𝑥𝑥)/𝜕𝜕in2
• Assume that we know:

• The value of the inputs: in1 and in2
• These were computed during the forwards pass

• The derivative of 𝑑𝑑(𝑥𝑥) with respect to (w.r.t.) the output out
of the multiplication function, ×.

• This is 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑out

• This was computed earlier in the backwards pass by the node
“above” the multiplication node.

×

in1 in2

𝑑𝑑(𝑥𝑥)

𝑥𝑥

out

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

Backwards Pass: Multiplication Node

• We want to compute 𝜕𝜕𝑑𝑑(𝑥𝑥)/𝜕𝜕in1 and 𝜕𝜕𝑑𝑑(𝑥𝑥)/𝜕𝜕in2
• Assume that we know:

• The value of the inputs: in1 and in2
• These were computed during the forwards pass

• The derivative of 𝑑𝑑(𝑥𝑥) with respect to (w.r.t.) the output out
of the multiplication function, ×.

• This is 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑out

• This was computed earlier in the backwards pass by the node
“above” the multiplication node.

• 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑in1

= 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in1

= ?

×

in1 in2

𝑑𝑑(𝑥𝑥)

𝑥𝑥

out

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

Backwards Pass: Multiplication Node

• We want to compute 𝜕𝜕𝑑𝑑(𝑥𝑥)/𝜕𝜕in1 and 𝜕𝜕𝑑𝑑(𝑥𝑥)/𝜕𝜕in2
• Assume that we know:

• The value of the inputs: in1 and in2
• These were computed during the forwards pass

• The derivative of 𝑑𝑑(𝑥𝑥) with respect to (w.r.t.) the output out
of the multiplication function, ×.

• This is 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑out

• This was computed earlier in the backwards pass by the node
“above” the multiplication node.

• 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑in1

= 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in1

=

• 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑in1

= 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in2

= ?

×

in1 in2

𝑑𝑑(𝑥𝑥)

𝑥𝑥

out

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

in2

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out in2

Backwards Pass: Multiplication Node

• We want to compute 𝜕𝜕𝑑𝑑(𝑥𝑥)/𝜕𝜕in1 and 𝜕𝜕𝑑𝑑(𝑥𝑥)/𝜕𝜕in2
• Assume that we know:

• The value of the inputs: in1 and in2
• These were computed during the forwards pass

• The derivative of 𝑑𝑑(𝑥𝑥) with respect to (w.r.t.) the output out
of the multiplication function, ×.

• This is 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑out

• This was computed earlier in the backwards pass by the node
“above” the multiplication node.

• 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑in1

= 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in1

=

• 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑in1

= 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in2

= 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑out

in1

×

in1 in2

𝑑𝑑(𝑥𝑥)

𝑥𝑥

out

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

in2

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out in2

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

in1

Backwards Pass

• For each math operator (+,−,×, 𝑎𝑎
𝑏𝑏

,⋅2, …) used by a parametric
model, derive the expression for the derivative of 𝑑𝑑(𝑥𝑥) with
respect to each input of the operator, assuming:

• The values of all inputs to the operator are known
• They will be computed during the forwards pass.

• The derivative of 𝑑𝑑(𝑥𝑥) w.r.t. the output of the operator is known
• It will already have been computed in the backwards pass.

Backwards Pass: Addition Node

• We want to compute 𝜕𝜕𝑑𝑑(𝑥𝑥)/𝜕𝜕in1 and 𝜕𝜕𝑑𝑑(𝑥𝑥)/𝜕𝜕in2
• Assume that we know:

• The value of the inputs: in1 and in2
• These were computed during the forwards pass

• The derivative of 𝑑𝑑(𝑥𝑥) w.r.t. the output out of the addition
function, +.

• This is 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑out

• This was computed earlier in the backwards pass by the node
“above” the multiplication node.

• 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑in1

= 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in1

+

in1 in2

𝑑𝑑(𝑥𝑥)

𝑥𝑥

out

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in1

= 1=
𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

Backwards Pass: Addition Node

• We want to compute 𝜕𝜕𝑑𝑑(𝑥𝑥)/𝜕𝜕in1 and 𝜕𝜕𝑑𝑑(𝑥𝑥)/𝜕𝜕in2
• Assume that we know:

• The value of the inputs: in1 and in2
• These were computed during the forwards pass

• The derivative of 𝑑𝑑(𝑥𝑥) w.r.t. the output out of the addition
function, +.

• This is 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑out

• This was computed earlier in the backwards pass by the node
“above” the multiplication node.

• 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑in1

= 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in1

• 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑in1

= 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in2

= 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑out

+

in1 in2

𝑑𝑑(𝑥𝑥)

𝑥𝑥

out

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in1

= 1=
𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

Backwards Pass: Exponent Node

• We want to compute 𝜕𝜕𝑑𝑑(𝑥𝑥)/𝜕𝜕in.
• Assume 𝑑𝑑 is a constant.
• Assume that we know:

• The value of the input in from the forwards pass
• The derivative of 𝑑𝑑(𝑥𝑥) w.r.t. the output out of the

exponentiation function, ⋅ 𝑑𝑑.
• This is 𝑑𝑑𝑑𝑑 𝑑𝑑

𝑑𝑑out
, as was computed previously in the backwards pass

• 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑in

= 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in

⋅𝑑𝑑

in

𝑑𝑑(𝑥𝑥)

𝑥𝑥

out

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

z𝑑𝑑𝑑𝑑 𝑑𝑑
𝑑𝑑out

in𝑑𝑑−1

=
𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

× 𝑑𝑑 × in𝑑𝑑−1

𝑥𝑥

⋅2

×

23

+

×

𝑑𝑑(𝑥𝑥)

𝑥𝑥 = 5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
Forwards Pass

Compute d𝑑𝑑
d𝑑𝑑

 for 𝑑𝑑 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥 at 𝑥𝑥 = 5

𝑥𝑥𝑦
𝑥𝑥𝑦𝑦

𝑥𝑥

⋅2

×

23

+

×

𝑑𝑑(𝑥𝑥)

𝑥𝑥 = 5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
Forwards Pass
Backwards Pass

Compute d𝑑𝑑
d𝑑𝑑

 for 𝑑𝑑 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥 at 𝑥𝑥 = 5

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑐𝑐

= ?

𝑥𝑥𝑦
𝑥𝑥𝑦𝑦

𝑥𝑥

⋅2

×

23

+

×

𝑑𝑑(𝑥𝑥)

𝑥𝑥 = 5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
Forwards Pass
Backwards Pass

Compute d𝑑𝑑
d𝑑𝑑

 for 𝑑𝑑 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥 at 𝑥𝑥 = 5

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑐𝑐

= 1
𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑎𝑎

= ?

𝑥𝑥𝑦
𝑥𝑥𝑦𝑦

𝑥𝑥

⋅2

×

23

+

×

𝑑𝑑(𝑥𝑥)

𝑥𝑥 = 5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
Forwards Pass
Backwards Pass

Compute d𝑑𝑑
d𝑑𝑑

 for 𝑑𝑑 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥 at 𝑥𝑥 = 5

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑐𝑐

= 1
𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑎𝑎

= 1

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑏𝑏

= ?

𝑥𝑥𝑦
𝑥𝑥𝑦𝑦

𝑥𝑥

⋅2

×

23

+

×

𝑑𝑑(𝑥𝑥)

𝑥𝑥 = 5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
Forwards Pass
Backwards Pass

Compute d𝑑𝑑
d𝑑𝑑

 for 𝑑𝑑 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥 at 𝑥𝑥 = 5

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑐𝑐

= 1
𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑎𝑎

= 1

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑏𝑏

= 3

𝑥𝑥𝑦
𝑥𝑥𝑦𝑦

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑥𝑥𝑦 = ?

𝑥𝑥

⋅2

×

23

+

×

𝑑𝑑(𝑥𝑥)

𝑥𝑥 = 5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
Forwards Pass
Backwards Pass

Compute d𝑑𝑑
d𝑑𝑑

 for 𝑑𝑑 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥 at 𝑥𝑥 = 5

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑐𝑐

= 1
𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑎𝑎

= 1

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑏𝑏

= 3

𝑥𝑥𝑦
𝑥𝑥𝑦𝑦

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑥𝑥𝑦 = 3 × 2 × 5 = 30

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑥𝑥𝑦𝑦 =?

𝑥𝑥

⋅2

×

23

+

×

𝑑𝑑(𝑥𝑥)

𝑥𝑥 = 5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
Forwards Pass
Backwards Pass

Compute d𝑑𝑑
d𝑑𝑑

 for 𝑑𝑑 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥 at 𝑥𝑥 = 5

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑐𝑐

= 1
𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑎𝑎

= 1

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑏𝑏

= 3

𝑥𝑥𝑦
𝑥𝑥𝑦𝑦

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑥𝑥𝑦 = 3 × 2 × 5 = 30

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑥𝑥𝑦𝑦 = 2

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑥𝑥 = ?

𝑥𝑥

⋅2

×

23

+

×

𝑑𝑑(𝑥𝑥)

𝑥𝑥 = 5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
Forwards Pass
Backwards Pass

Compute d𝑑𝑑
d𝑑𝑑

 for 𝑑𝑑 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥 at 𝑥𝑥 = 5

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑐𝑐

= 1
𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑎𝑎

= 1

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑏𝑏

= 3

𝑥𝑥𝑦
𝑥𝑥𝑦𝑦

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑥𝑥𝑦 = 3 × 2 × 5 = 30

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑥𝑥𝑦𝑦 = 2

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑥𝑥 = 30 + 2 = 32

Automatic Differentiation
• Automatic differentiation tools take functions as input

• Typically these functions are implemented as code, e.g., python functions.
• They can then be used to take the derivative of the function with respect to

the arguments (inputs).
• There are several methods for automatic differentiation, with different pros

and cons.
• Forwards Mode Automatic Differentiation: Runs one forwards pass (no backwards

pass!). Computes the derivative of the output w.r.t. a single scalar input.
• Reverse Mode Automatic Differentiation: The strategy we have described.

• Requires a forward and backwards pass.
• Can compute the derivative with respect to all inputs with one forwards+backwards pass.
• This is most common for automatically differentiating ML models and loss functions.

• Others include symbolic differentiation (manipulating the mathematical expressions to
calculate expressions for the derivative) and finite difference methods (beyond the
scope of this course).

End

	COMPSCI 389�Introduction to Machine Learning
	Slide Number 2
	Old Answer: Manual Calculus!
	Chain Rule (Review)
	Chain Rule
	Chain Rule
	Chain Rule
	Chain Rule
	Expression Trees
	𝑓 𝑥 =3 𝑥 2 +2𝑥
	Automatic Differentiation
	Backwards Pass: Multiplication Node
	Backwards Pass: Multiplication Node
	Backwards Pass: Multiplication Node
	Backwards Pass: Multiplication Node
	Backwards Pass
	Backwards Pass: Addition Node
	Backwards Pass: Addition Node
	Backwards Pass: Exponent Node
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Automatic Differentiation
	End

