

# COMPSCI 389 Introduction to Machine Learning

Days: Tu/Th. Time: 2:30 – 3:45 Building: Morrill 2 Room: 222

**Topic 10.0: Automatic Differentiation** 

Prof. Philip S. Thomas (pthomas@cs.umass.edu)

### Coming up...

**Convolution Neural Network (CNN)** 



To train the model, we need the derivative of the loss function with respect to each weight. How can we compute the derivative with respect to this weight in the model?

#### Old Answer: Manual Calculus!

- By finding clever patters in the derivatives, they can be derived and computed **relatively** easily.
  - ... for fully connected feed forward networks.
- As network architectures became bigger and more sophisticated, there was a growing need for automated systems for computing the necessary derivatives.
- This lecture provides an overview of these methods, called **automatic differentiation** methods.
- Before using these to differentiate loss functions w.r.t. model parameters, we describe how they can be used to take the derivative of an arbitrary function.

#### Chain Rule (Review)

 $\frac{df(g(x))}{dx} = \frac{df(x)}{dg(x)}\frac{dg(x)}{dx}$ 

or

 $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$ 



 $\frac{dz}{dx} - \text{How does changing } x \text{ change } z? =? (adding \epsilon \text{ to } x \text{ increases } z \text{ by } ? \epsilon)$   $\frac{dy}{dx} - \text{How does changing } x \text{ change } y? =2 (adding \epsilon \text{ to } x \text{ increases } y \text{ by } 2\epsilon)$   $\frac{dz}{dy} - \text{How does changing } y \text{ change } z? =3 (adding \epsilon \text{ to } y \text{ increases } z \text{ by } 3\epsilon)$ 



 $\frac{dz}{dx} - \text{How does changing } x \text{ change } z? = 6 \text{ (adding } \epsilon \text{ to } x \text{ increases } z \text{ by } 6\epsilon)$   $\frac{dy}{dx} - \text{How does changing } x \text{ change } y? = 2 \text{ (adding } \epsilon \text{ to } x \text{ increases } y \text{ by } 2\epsilon)$   $\frac{dz}{dy} - \text{How does changing } y \text{ change } z? = 3 \text{ (adding } \epsilon \text{ to } y \text{ increases } z \text{ by } 3\epsilon)$ 

# Chain Rule





# Chain Rule





#### **Expression Trees**

- Math expressions like function definitions can be converted into expression trees. f(x)
  - Each internal node is a math operator.
  - Each leaf node is a constant or variable.
- Example:  $f(x) = 3x^2 + 2x$



 $f(x) = 3x^2 + 2x$ 

- Each math operator (internal node) can be viewed as a function.
- We can view this expression as the composition of many functions:
  - $f_1(x) = x^2$
  - $f_2(x, y) = xy$
  - $f_3(x,y) = x + y$
  - $f(x) = f_3(f_2(3, f_1(x)), f_2(2, x))$
- We can apply the chain rule to break the derivative,  $\frac{df(x)}{dx}$ , into many smaller problems!



#### Automatic Differentiation

- Goal: Compute  $\frac{df(x)}{dx}$ , for some value of x
  - Example: x = 5
- Step 1: Run a "forwards pass"
  - Evaluate the expression tree, computing values from the bottom to the top.
- Step 2: Run a "backwards pass"
  - Loop over nodes from the top to the bottom.
  - For each node, compute the derivative of f(x) with respect to each *input* of the node.



We write x' and x'' so that we can talk about the two paths,  $\frac{df(x)}{dx'}$  and

- We want to compute  $\partial f(x)/\partial in_1$  and  $\partial f(x)/\partial in_2$
- Assume that we know:
  - The value of the inputs:  $in_1$  and  $in_2$ 
    - These were computed during the forwards pass
  - The derivative of f(x) with respect to (w.r.t.) the output out of the multiplication function,  $\times$ .
    - This is  $\frac{df(x)}{dx}$
    - This was computed earlier in the backwards pass by the node "above" the multiplication node.



dout

- We want to compute  $\partial f(x)/\partial in_1$  and  $\partial f(x)/\partial in_2$
- Assume that we know:
  - The value of the inputs:  $in_1$  and  $in_2$ 
    - These were computed during the forwards pass
  - The derivative of f(x) with respect to (w.r.t.) the output out of the multiplication function,  $\times$ .
    - This is  $\frac{df(x)}{dout}$
    - This was computed earlier in the backwards pass by the node "above" the multiplication node.

• 
$$\frac{df(x)}{din_1} = \frac{df(x)}{dout}\frac{dout}{din_1} = ?$$

df(x)

df(x)

dout

out

in<sub>2</sub>

In<sub>1</sub>

- We want to compute  $\partial f(x)/\partial in_1$  and  $\partial f(x)/\partial in_2$
- Assume that we know:
  - The value of the inputs:  $in_1$  and  $in_2$ 
    - These were computed during the forwards pass
  - The derivative of f(x) with respect to (w.r.t.) the output out of the multiplication function,  $\times$ . • This is  $\frac{df(x)}{df(x)}$ 
    - This is  $\frac{df(x)}{dout}$
    - This was computed earlier in the backwards pass by the node "above" the multiplication node.

2

• 
$$\frac{df(x)}{din_1} = \frac{df(x)}{dout} \frac{dout}{din_1} = \frac{df(x)}{dout}$$
 in  
•  $\frac{df(x)}{din_1} = \frac{df(x)}{dout} \frac{dout}{din_2} = ?$ 

- We want to compute  $\partial f(x)/\partial in_1$  and  $\partial f(x)/\partial in_2$
- Assume that we know:
  - The value of the inputs:  $in_1$  and  $in_2$ 
    - These were computed during the forwards pass
  - The derivative of f(x) with respect to (w.r.t.) the output out of the multiplication function,  $\times$ .
    - This is  $\frac{df(x)}{dout}$
    - This was computed earlier in the backwards pass by the node "above" the multiplication node.





#### **Backwards Pass**

- For each math operator  $(+, -, \times, \frac{a}{b}, \cdot^2, ...)$  used by a parametric model, derive the expression for the derivative of f(x) with respect to each input of the operator, assuming:
  - The values of all inputs to the operator are known
    - They will be computed during the forwards pass.
  - The derivative of f(x) w.r.t. the output of the operator is known
    - It will already have been computed in the backwards pass.

#### Backwards Pass: Addition Node

- We want to compute  $\partial f(x)/\partial in_1$  and  $\partial f(x)/\partial in_2$
- Assume that we know:
  - The value of the inputs:  $in_1$  and  $in_2$ 
    - These were computed during the forwards pass
  - The derivative of f(x) w.r.t. the output out of the addition function, +.
    - This is  $\frac{df(x)}{dout}$
    - This was computed earlier in the backwards pass by the node "above" the multiplication node.

• 
$$\frac{df(x)}{din_1} = \frac{df(x)}{dout}\frac{dout}{din_1} = \frac{df(x)}{dout}$$



dout

 $din_1$ 

= 1

#### Backwards Pass: Addition Node

- We want to compute  $\partial f(x)/\partial in_1$  and  $\partial f(x)/\partial in_2$
- Assume that we know:
  - The value of the inputs:  $in_1$  and  $in_2$ 
    - These were computed during the forwards pass
  - The derivative of f(x) w.r.t. the output out of the addition function, +.
    - This is  $\frac{df(x)}{dout}$
    - This was computed earlier in the backwards pass by the node "above" the multiplication node.

• 
$$\frac{df(x)}{din_1} = \frac{df(x)}{dout} \frac{dout}{din_1} = \frac{df(x)}{dout}$$
  
•  $\frac{df(x)}{din_1} = \frac{df(x)}{dout} \frac{dout}{din_2} = \frac{df(x)}{dout}$ 



*d*out

 $din_1$ 

#### Backwards Pass: Exponent Node

- We want to compute  $\partial f(x)/\partial in$ .
- Assume *z* is a constant.
- Assume that we know:
  - The value of the input in from the forwards pass
  - The derivative of f(x) w.r.t. the output out of the **exponentiation** function,  $(\cdot)^{z}$ .

• This is  $\frac{df(x)}{dout}$ , as was computed previously in the backwards pass

• 
$$\frac{df(x)}{din} = \frac{df(x)}{dout}\frac{dout}{din} = \frac{df(x)}{dout} \times z \times in^{z-1}$$



Compute 
$$\frac{df}{dx}$$
 for  $f(x) = 3x^2 + 2x$  at  $x = 5$ 

**Forwards Pass** 



Compute 
$$\frac{df}{dx}$$
 for  $f(x) = 3x^2 + 2x$  at  $x = 5$ 



Compute 
$$\frac{df}{dx}$$
 for  $f(x) = 3x^2 + 2x$  at  $x = 5$ 



Compute 
$$\frac{df}{dx}$$
 for  $f(x) = 3x^2 + 2x$  at  $x = 5$ 



Compute 
$$\frac{df}{dx}$$
 for  $f(x) = 3x^2 + 2x$  at  $x = 5$ 



Compute 
$$\frac{df}{dx}$$
 for  $f(x) = 3x^2 + 2x$  at  $x = 5$ 



Compute 
$$\frac{df}{dx}$$
 for  $f(x) = 3x^2 + 2x$  at  $x = 5$ 



Compute 
$$\frac{df}{dx}$$
 for  $f(x) = 3x^2 + 2x$  at  $x = 5$ 



#### **Automatic Differentiation**

- Automatic differentiation tools take functions as input
  - Typically these functions are implemented as code, e.g., *python functions*.
- They can then be used to take the derivative of the function with respect to the arguments (inputs).
- There are several methods for automatic differentiation, with different pros and cons.
  - Forwards Mode Automatic Differentiation: Runs one forwards pass (no backwards pass!). Computes the derivative of the output w.r.t. a *single* scalar input.
  - Reverse Mode Automatic Differentiation: The strategy we have described.
    - Requires a forward and backwards pass.
    - Can compute the derivative with respect to all inputs with one forwards+backwards pass.
    - This is most common for automatically differentiating ML models and loss functions.
  - Others include **symbolic differentiation** (manipulating the mathematical expressions to calculate expressions for the derivative) and **finite difference methods** (beyond the scope of this course).

## End

